SNSB Summer Term 2013 Ergodic Theory and Additive Combinatorics Laurențiu Leuștean

22.05.2013

Seminar 4

(S4.1) Consider the full shift $W^{\mathbb{Z}}$. The following are equivalent:

(i) $\mathbf{x} \in W^{\mathbb{Z}}$ is recurrent.

- (ii) Every nonempty block of \mathbf{x} occurs a second time.
- (iii) Every nonempty block of \mathbf{x} occurs infinitely often.

Proof. (i) \Rightarrow (ii) Assume that **x** is recurrent, and let $u := \mathbf{x}_{[i,j]}$ be a nonempty block of **x**. Take $k := \max\{|i|, |j|\}$, so that $\mathbf{x}_{[i,j]}$ is a subblock of $\mathbf{x}_{[-k,k]}$. Apply the fact that **x** is recurrent to get $n \ge 1$ such that $T^n \mathbf{x} \in B_{2^{-k+1}}(\mathbf{x})$, that is $\mathbf{x}_{[-k,k]} = \mathbf{x}_{[n-k,n+k]}$. It follows that $\mathbf{x}_{[i,j]} = \mathbf{x}_{[n+i,n+j]}$ and n+i > i. (ii) \Rightarrow (i) It is enough to prove that for all $k \ge 0$ there exists $n \ge 1$ such that $T^n x \in B_{2^{-k+1}}(\mathbf{x})$, i.e. $\mathbf{x}_{[-k,k]} = \mathbf{x}_{[n-k,n+k]}$. Apply (ii) for the central block $\mathbf{x}_{[-k,k]}$. (iii) \Rightarrow (ii) Obviously.

 $(ii) \Rightarrow (iii)$ Apply (ii) repeatedly.

(S4.2) Let $x \in X$ and $\mathbf{x} = (x, \ldots, x) \in X^{l}_{\Delta}$ (see the notations from Section 1.7). The following are equivalent:

- (i) x is multiply recurrent for T_1, \ldots, T_l .
- (ii) **x** is a recurrent point in (X^l, \tilde{T}) .
- (iii) For all $\varepsilon > 0$ there exists $N \ge 1$ such that $d(\mathbf{x}, \tilde{T}^N \mathbf{x}) < \varepsilon$.
- (iv) For all $\varepsilon > 0$ there exists $N \ge 1$ such that $d(x, T_i^N x) < \varepsilon$ for all $i = 1, \ldots, l$.

Proof. (i) \Leftrightarrow (ii) Apply Lemma 1.6.8 and the fact that, by the definition of the metric d_l , we have that $\lim_{k\to\infty} \tilde{T}^{n_k}\mathbf{x} = \mathbf{x}$ if and only if for all $i = 1, \ldots, k$, $\lim_{k\to\infty} T_i^{n_k} x = x$.

 $(ii) \Leftrightarrow (iii)$ By definition, **x** is recurrent if and only for every open neighborhood U of **x** there exists $N \ge 1$ such that $\tilde{T}^N \mathbf{x} \in U$ if and only for every $\varepsilon > 0$ there exists $N \ge 1$ such that $\tilde{T}^N \mathbf{x} \in B(\mathbf{x}, \varepsilon)$.

$$(iii) \Leftrightarrow (iv)$$
 Obviously.

(S4.3) Let X be a compact Hausdorff topological space, $l \ge 1$, and $T_1, \ldots, T_l : X \to X$ be commuting homeomorphisms. Then

- (i) X contains a subset X_0 which is minimal with the property that it is nonempty closed and strongly T_i -invariant for all i = 1, ..., l.
- (ii) For every nonempty open subset U of X_0 , there are $M \ge 1$ and $n_{ij} \in \mathbb{Z}, i = 1, \ldots, l, j = 1, \ldots, M$ such that $X_0 = \bigcup_{j=1}^{M} (T_1^{n_{1j}} \circ \ldots \circ T_l^{n_{lj}})(U).$
- (iii) $(X_0)^l_{\Delta}$ is strongly \tilde{T}_i -invariant for all $i = 1, \dots, l$.
- Proof. (i) Let \mathcal{M} be the family of all nonempty closed subsets of X that are strongly T_i -invariant for all $i = 1, \ldots, l$, with the partial ordering by inclusion. Then, of course, $X \in \mathcal{M}$, so \mathcal{M} is non-empty. Let $(A_i)_{i \in I}$ be a chain in \mathcal{M} and take $A := \bigcap A_i$. Then

 $A \in \mathcal{M}$, since A is nonempty (by B.10.4), A is closed, and A is strongly T_i -invariant for all $i = 1, \ldots, l$ (by Proposition 1.3.4.(v)). Thus, by Zorn's Lemma A.0.12 there exists a minimal element $X_0 \in \mathcal{M}$.

(ii) Let $A := \bigcup_{n_l \in \mathbb{Z}} \dots \bigcup_{n_l \in \mathbb{Z}} (T_1^{n_1} \circ \dots \circ T_l^{n_l})(U)$. Then A is nonempty, open and strongly T_i -invariant for all $i = 1, \dots, l$. Thus, $X_0 \setminus A$ is a proper subset of X_0 which is closed and strongly T_i -invariant for all $i = 1, \dots, l$. From the minimality of X_0 , we must have $X_0 = A$. Since X_0 is compact, as a closed subset of the compact space X, we can choose a finite subcover.

(iii) We have that
$$T_i((X_0)^l_{\Delta}) = (T_i(X_0))^l_{\Delta} = (X_0)^l_{\Delta}$$
.